
7
JavaScript: Introduction

to Scripting

Objectives
• To be able to write simple JavaScript programs.

• To be able to use input and output statements.

• To understand basic memory concepts.

• To be able to use arithmetic operators.

• To understand the precedence of arithmetic operators.

• To be able to write decision-making statements.

• To be able to use relational and equality operators.

Comment is free, but facts are sacred.

C. P. Scott

The creditor hath a better memory than the debtor.

James Howell

When faced with a decision, I always ask, “What would be

the most fun?”

Peggy Walker

Equality, in a social sense, may be divided into that of

condition and that of rights.

James Fenimore Cooper

iw3htp2.book Page 194 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 195

7.1 Introduction

In the first six chapters, we introduced the Internet and World Wide Web, Internet Explorer

5.5, Adobe Photoshop Elements, XHTML and Cascading Style Sheets (CSS). In this chap-

ter, we begin our introduction to the JavaScript1 scripting language, which facilitates a dis-

ciplined approach to designing computer programs that enhance the functionality and

appearance of Web pages.

In Chapters 7–12, we present a detailed discussion of JavaScript—the de facto client-

side scripting language for Web-based applications. These chapters provide the program-

ming foundation for both client-side scripting (Chapters 7–20) and server-side scripting

(Chapters 25–31). Our treatment of JavaScript (Chapters 7–12) serves two purposes—it

introduces client-side scripting, which makes Web pages more dynamic and interactive,

and it provides the foundation for the more complex server-side scripting presented in

Chapters 25–31.

We now introduce JavaScript programming and present examples that illustrate sev-

eral important features of JavaScript. Each example is carefully analyzed one line at a time.

In Chapters 8–9, we present a detailed treatment of program development and program

control in JavaScript.

7.2 Simple Program: Printing a Line of Text in a Web Page

JavaScript uses notations that may appear strange to nonprogrammers. We begin by con-

sidering a simple script (or program) that displays the text “Welcome to JavaScript

Programming!” in the body of an XHTML document. The Internet Explorer Web

browser contains a JavaScript interpreter, which processes the commands written in Java-

Script. The JavaScript code and its output are shown in Fig. 7.1.

Outline

7.1 Introduction

7.2 Simple Program: Printing a Line of Text in a Web Page

7.3 Another JavaScript Program: Adding Integers

7.4 Memory Concepts

7.5 Arithmetic

7.6 Decision Making: Equality and Relational Operators

7.7 JavaScript Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. Microsoft’s version of JavaScript is called JScript. JavaScript was originally created by Netscape.
Both Netscape and Microsoft have been instrumental in the standardization of JavaScript/JScript
by the ECMA (European Computer Manufacturer’s Association) as ECMAScript. For information
on the current ECMAScript standard, visit www.ecma.ch/stand/ecma-262.htm.
Throughout this book, we refer to JavaScript and JScript generically as JavaScript.

iw3htp2.book Page 195 Wednesday, July 18, 2001 9:01 AM

196 JavaScript: Introduction to Scripting Chapter 7

This program illustrates several important JavaScript features. We consider each line

of the XHTML document and script in detail. We have given each XHTML document line

numbers for the reader’s convenience; those line numbers are not part of the XHTML doc-

ument or of the JavaScript programs. Lines 14–15 do the “real work” of the script, namely

displaying the phrase Welcome to JavaScript Programming! in the Web page.

However, let us consider each line in order.

Line 9 indicates the beginning of the <head> section of the XHTML document. For

the moment, the JavaScript code we write will appear in the <head> section. The browser

interprets the contents of the <head> section first, so the JavaScript programs we write

there will execute before the <body> of the XHTML document displays. In later chapters

on JavaScript and in the chapters on dynamic HTML, we illustrate inline scripting, in

which JavaScript code is written in the <body> of an XHTML document.

Line 11 is simply a blank line to separate the <script> tag at line 12 from the other

XHTML elements. This effect helps the script stand out in the XHTML document and

makes the document easier to read.

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.1: welcome.html -->

6 <!-- Displaying a line of text -->

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>A First Program in JavaScript</title>

11
12 <script type = "text/javascript">

13 <!--

14 document.writeln(

15 "<h1>Welcome to JavaScript Programming!</h1>");

16 // -->

17 </script>

18
19 </head><body></body>

20 </html>

Fig. 7.1Fig. 7.1Fig. 7.1Fig. 7.1 First program in JavaScript.

Title of the

XHTML

document

Location and name of the

loaded XHTML document

Script result

iw3htp2.book Page 196 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 197

Good Programming Practice 7.1

Place a blank line before <script> and after </script> to separate the script from the

surrounding XHTML elements and to make the script stand out in the document. 7.1

Line 12 uses the <script> tag to indicate to the browser that the text which follows

is part of a script. The type attribute specifies the type of file as well as the scripting lan-

guage used in the script—in this case, a text file written in javascript. Both

Microsoft Internet Explorer and Netscape Communicator use JavaScript as the default

scripting language. [Note: Even though Microsoft calls the language JScript, the type

attribute specifies javascript, to adhere to the ECMAScript standard.]

Lines 14–15 instruct the browser’s JavaScript interpreter to perform an action, namely

to display in the Web page the string of characters contained between the double quotation

(") marks. A string is sometimes called a character string, a message or a string literal. We

refer to characters between double quotation marks generically as strings. Individual

whitespace characters between words in a string are not ignored by the browser. However,

if consecutive spaces appear in a string, browsers condense those spaces to a single space.

Also, in most cases, browsers ignore leading whitespace characters (i.e., whitespace at the

beginning of a string).

Software Engineering Observation 7.1

Strings in JavaScript can also be enclosed in single quotation marks (’). 7.1

Lines 14–15 use the browser’s document object, which represents the XHTML doc-

ument the browser is currently displaying. The document object allows a script pro-

grammer to specify text to display in the XHTML document. The browser contains a

complete set of objects that allow script programmers to access and manipulate every ele-

ment of an XHTML document. In the next several chapters, we overview some of these

objects. Chapters 13 through 18 provide in-depth coverage of many more objects that a

script programmer can manipulate.

An object resides in the computer’s memory and contains information used by the

script. The term object normally implies that attributes (data) and behaviors (methods) are

associated with the object. The object’s methods use the attributes to provide useful ser-

vices to the client of the object (i.e., the script that calls the methods). In lines 14–15, we

call the document object’s writeln method to write a line of XHTML markup in the

XHTML document. The parentheses following the method name writeln contain the

arguments that the method requires to perform its task (or its action). Method writeln

instructs the browser to display the argument string. If the string contains XHTML ele-

ments, the browser interprets these elements and renders them on the screen. In this

example, the browser displays the phrase Welcome to JavaScript Programming!

as an h1-level XHTML head, because the phrase is enclosed in an h1 element.

The code elements in lines 14–15, including document.writeln, its argument in

the parentheses (the string) and the semicolon (;), together are called a statement. Every

statement should end with a semicolon (also known as the statement terminator), although

this practice is not required by JavaScript. Line 17 indicates the end of the script.

Good Programming Practice 7.2

Always include the semicolon at the end of a statement to terminate the statement. This no-

tation clarifies where one statement ends and the next statement begins. 7.2

iw3htp2.book Page 197 Wednesday, July 18, 2001 9:01 AM

198 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.1

Forgetting the ending </script> tag for a script may prevent the browser from interpret-

ing the script properly and may prevent the XHTML document from loading properly. 7.1

The </head> tag at line 19 indicates the end of the <head> section. Also on line 19,

the tags <body> and </body> specify that this XHTML document has an empty body—

no XHTML appears in the body element. Line 20 indicates the end of this XHTML doc-

ument.

We are now ready to view our XHTML document in Internet Explorer. Open the

XHTML document in Internet Explorer by double-clicking it. If the script contains no

syntax errors, it should produce the output shown in Fig. 7.1.

Common Programming Error 7.2

JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syntax

error. A syntax error occurs when the script interpreter cannot recognize a statement. The

interpreter normally issues an error message to help the programmer locate and fix the in-

correct statement. Syntax errors are violations of the rules of the programming language.

The interpreter notifies you of a syntax error it attempts to execute the statement containing

the error. The JavaScript interpreter in Internet Explorer reports all syntax errors by indi-

cating in a separate popup window that a “runtime error” occurred (i.e., a problem occurred

while the interpreter was running the script). 7.2

Testing and Debugging Tip 7.1

When the interpreter reports a syntax error, the error may not be on the line indicated by the

error message. First, check the line for which the error was reported. If that line does not

contain errors, check the preceding several lines in the script. 7.1

Some older Web browsers do not support scripting. In such browsers, the actual text

of a script often will display in the Web page. To prevent this from happening, many script

programmers enclose the script code in an XHTML comment, so that browsers which do

not support scripts ignore the script. The syntax used is as follows:

<script type = "text/javascript">

 <!--

 script code here
 // -->

</script>

When a browser that does not support scripts encounters the preceding code, it ignores the

<script> and </script> tags and the script code in the XHTML comment. Browsers

that do support scripting will interpret the JavaScript code as expected. [Note: Some brows-

ers require the JavaScript single-line comment // (see Section 7.3 for an explanation) be-

fore the ending XHTML comment delimiter (-->) to interpret the script properly.]

Portability Tip 7.1

Some browsers do not support the <script>…</script> tags. If your document is to

be rendered with such browsers, the script code between these tags should be enclosed in an

XHTML comment, so that the script text does not get displayed as part of the Web page. 7.1

A script can display Welcome to JavaScript Programming! several ways.

Figure 7.2 uses two JavaScript statements to produce one line of text in the XHTML docu-

ment. This example also displays the text in a different color using the CSS color property.

iw3htp2.book Page 198 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 199

Most of this XHTML document is identical to Fig. 7.1, so we concentrate only on

lines 14–16 of Fig. 7.2, which display one line of text in the XHTML document. The first

statement uses document method write to display a string. Unlike writeln, write

does not position the output cursor in the XHTML document at the beginning of the next

line after writing its argument. [Note: The output cursor keeps track of where the next

character appears in the XHTML document.] The next character written in the XHTML

document appears immediately after the last character written with write. Thus, when

line 16 executes, the first character written, “J,” appears immediately after the last char-

acter displayed with write (the space character inside the right double quote on line 15).

Each write or writeln statement resumes writing characters where the last write

or writeln statement stopped writing characters. So, after a writeln statement, the

next output appears on the next line. In effect, the two statements in lines 14–16 result in

one line of XHTML text. Remember that statements in JavaScript are separated by semi-

colons (;). Therefore, lines 15–16 represent one statement. JavaScript allows large state-

ments to be split over many lines. However, you cannot split a statement in the middle of

a string.

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.2: welcome2.html -->

6 <!-- Printing a Line with Multiple Statements -->

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>Printing a Line with Multiple Statements</title>

11
12 <script type = "text/javascript">

13 <!--

14 document.write("<h1 style = \"color: magenta\">");

15 document.write("Welcome to JavaScript " +

16 "Programming!</h1>");

17 // -->

18 </script>

19
20 </head><body></body>

21 </html>

Fig. 7.2Fig. 7.2Fig. 7.2Fig. 7.2 Printing on one line with separate statements.

iw3htp2.book Page 199 Wednesday, July 18, 2001 9:01 AM

200 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.3

Splitting a statement in the middle of a string is a syntax error. 7.3

Notice, however, that the two characters “\” and “"” are not displayed in the

browser. The backslash (\) in a string is an escape character. It indicates that a “special”

character is to be used in the string. When a backslash is encountered in a string of char-

acters, the next character is combined with the backslash to form an escape sequence.

The escape sequence \" is the double-quote character, which causes a double-quote

character to be inserted into the string. We use this escape sequence to insert double-

quotes around the attribute value for style. We discuss escape sequences in greater

detail momentarily.

It is important to note that the preceding discussion has nothing to do with the actual

rendering of the XHTML text. Remember that the browser does not create a new line of

text unless the browser window is too narrow for the text being rendered, or unless the

browser encounters an XHTML element that explicitly starts a new line—e.g.,
 to

start a new line, <p> to start a new paragraph, etc.

Common Programming Error 7.4

Many people confuse the writing of XHTML text with the rendering of XHTML text. Writing

XHTML text creates the XHTML that will be rendered by the browser for presentation to the

user. 7.1

In the next example, we demonstrate that a single statement can cause the browser to

display multiple lines through the use of line-break XHTML tags (
) throughout the

string of XHTML text in a write or writeln method call. Figure 7.3 demonstrates the

use of line-break XHTML tags. Lines 13–14 produce three separate lines of text when the

browser renders the XHTML document.

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.3: welcome3.html -->

6 <!-- Printing Multiple Lines -->

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head><title>Printing Multiple Lines</title>

10
11 <script type = "text/javascript">

12 <!--

13 document.writeln("<h1>Welcome to
JavaScript" +

14 "
Programming!</h1>");

15 // -->

16 </script>

17
18 </head><body></body>

19 </html>

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Printing on multiple lines with a single statement (part 1 of 2).

iw3htp2.book Page 200 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 201

The first several programs in this chapter display text in the XHTML document. Some-

times it is useful to display information in windows called dialogs (or dialog boxes) that

“pop up” on the screen to grab the user’s attention. Dialogs typically display important

messages to users browsing the Web page. JavaScript allows you easily to display a dialog

box containing a message. The program in Fig. 7.4 displays Welcome to JavaScript

Programming! as three lines in a predefined dialog called an alert dialog.

Line 13 in the script uses the browser’s window object to display an alert dialog. The

argument to the window object’s alert method is the string to display. Executing the pre-

ceding statement displays the dialog shown in the first window of Fig. 7.4. The title bar of the

dialog contains the string Microsoft Internet Explorer, to indicate that the browser is pre-

senting a message to the user. The dialog provides an OK button that allows the user to dis-

miss (i.e., hide) the dialog by clicking the button. To dismiss the dialog position the mouse

cursor (also called the mouse pointer) over the OK button and click the mouse.

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.4: welcome4.html -->

6 <!-- Printing multiple lines in a dialog box -->

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head><title>Printing Multiple Lines in a Dialog Box</title>

10
11 <script type = "text/javascript">

12 <!--

13 window.alert("Welcome to\nJavaScript\nProgramming!");

14 // -->

15 </script>

16
17 </head>

18
19 <body>

20 <p>Click Refresh (or Reload) to run this script again.</p>

21 </body>

22 </html>

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Displaying multiple lines in a dialog (part 1 of 2).

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Printing on multiple lines with a single statement (part 2 of 2).

iw3htp2.book Page 201 Wednesday, July 18, 2001 9:01 AM

202 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.5

Dialogs display plain text; they do not render XHTML. Therefore, specifying XHTML ele-

ments as part of a string to be displayed in a dialog results in the actual characters of the

tags being displayed. 7.5

Note that the alert dialog contains three lines of plain text. Normally, a diaolg dis-

plays the characters in a string exactly as they appear between the double quotes. Notice,

however, that the dialog does not display the two characters “\” and “n.” The escape

sequence \n is the newline character. In a dialog, the newline character causes the cursor

(the current screen position indicator) to move to the beginning of the next line in the

dialog. Some other common escape sequences are listed in Fig. 7.5. The \n, \t and \r

escape sequences in the table do not affect XHTML rendering unless they are in a pre ele-

ment (this element displays the text between its tags in a fixed-width font exactly as it is

formatted between the tags, including leading whitespace characters and consecutive

whitespace characters). The other escape sequences result in characters that will be dis-

played in plain text dialogs and in XHTML.

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Displaying multiple lines in a dialog (part 2 of 2).

The OK button

allows the user to

dismiss (or hide)

the dialog.

The dialog is

automatically sized

to accommodate

the string.

Title bar

Mouse cursor

Escape sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the cur-

rent line; do not advance to the next line. Any characters output after

the carriage return overwrite the characters previously output on that

line.

\\ Backslash. Used to represent a backslash character in a string.

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Some common escape sequences (part 1 of 2).

iw3htp2.book Page 202 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 203

7.3 Another JavaScript Program: Adding Integers

Our next script inputs two integers (whole numbers, such as 7, –11, 0 and 31,914) typed by

a user at the keyboard, computes the sum of the values and displays the result.

The script uses another predefined dialog box from the window object, one called a

prompt dialog, that allows the user to input a value for use in the script. The program dis-

plays the results of the addition operation in the XHTML document. Figure 7.6 shows the

script and some sample screen captures. [Note: In later JavaScript chapters, we will obtain

input via GUI components in XHTML forms, as introduced in Chapter 5.]

\" Double quote. Used to represent a double quote character in a string

contained in double quotes. For example,

 window.alert("\"in quotes\"");

displays "in quotes" in an alert dialog.

\' Single quote. Used to represent a single quote character in a string. For

example,

 window.alert('\'in quotes\'');

displays 'in quotes' in an alert dialog.

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.6: Addition.html -->

6 <!-- Addition Program -->

7
8 <html xmlns = "http://www.w3.org/1999/xhtml">

9 <head>

10 <title>An Addition Program</title>

11
12 <script type = "text/javascript">

13 <!--

14 var firstNumber, // first string entered by user

15 secondNumber, // second string entered by user

16 number1, // first number to add

17 number2, // second number to add

18 sum; // sum of number1 and number2

19
20 // read in first number from user as a string

21 firstNumber =

22 window.prompt("Enter first integer", "0");

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Addition script “in action” (part 1 of 2).

Escape sequence Description

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Some common escape sequences (part 2 of 2).

iw3htp2.book Page 203 Wednesday, July 18, 2001 9:01 AM

204 JavaScript: Introduction to Scripting Chapter 7

Lines 14–18 are declarations. The keyword var at the beginning of the statement indi-

cates that the words firstNumber, secondNumber, number1, number2 and sum

are the names of variables. A variable is a location in the computer’s memory where a value

23
24 // read in second number from user as a string

25 secondNumber =

26 window.prompt("Enter second integer", "0");

27
28 // convert numbers from strings to integers

29 number1 = parseInt(firstNumber);

30 number2 = parseInt(secondNumber);

31
32 // add the numbers

33 sum = number1 + number2;

34
35 // display the results

36 document.writeln("<h1>The sum is " + sum + "</h1>");

37 // -->

38 </script>

39
40 </head>

41 <body>

42 <p>Click Refresh (or Reload) to run the script again</p>

43 </body>

44 </html>

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Addition script “in action” (part 2 of 2).

iw3htp2.book Page 204 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 205

can be stored for use by a program. All variables should be declared with a name in a var

statement before they are used in a program. Although using var to declare variables is not

required, we will see in Chapter 10, “JavaScript/JScript: Functions,” that var sometimes

ensures proper behavior of a script.

The name of a variable can be any valid identifier. An identifier is a series of characters

consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin with a

digit and does not contain any spaces. Some valid identifiers are Welcome, $value,

_value, m_inputField1 and button7. The name 7button is not a valid identifier,

because it begins with a digit, and the name input field is not a valid identifier, because

it contains a space. Remember that JavaScript is case sensitive—uppercase and lowercase

letters are considered to be different characters, so firstNumber, FiRsTnUmBeR and

FIRSTNUMBER are different identifiers.

Good Programming Practice 7.3

Choosing meaningful variable names helps a script to be “self-documenting” (i.e., easy to

understand by simply reading the script, rather than having to read manuals or excessive

comments). 7.3

Good Programming Practice 7.4

By convention, variable-name identifiers begin with a lowercase first letter. Every word in

the name after the first word should begin with a capital first letter. For example, identifier

firstNumber has a capital N in its second word, Number. 7.4

Common Programming Error 7.6

Splitting a statement in the middle of an identifier is normally a syntax error. 7.6

Declarations, like statements, end with a semicolon (;) and can be split over several lines

(as shown in Fig. 7.6) with each variable in the declaration separated by a comma—known

as a comma-separated list of variable names. Several variables may be declared either in one

declaration or in multiple declarations. We could have written five declarations, one for each

variable, but the single declaration we used in the program is more concise.

Programmers often indicate the purpose of each variable in the program by placing a Jav-

aScript comment at the end of each line in the declaration. In lines 14–18, single-line com-

ments that begin with the characters // state the purpose of each variable in the script. This

form of comment is called a single-line comment because the comment terminates at the end

of the line. A // comment can begin at any position in a line of JavaScript code and continues

until the end of that line. Comments do not cause the browser to perform any action when the

script is interpreted; rather, comments are ignored by the JavaScript interpreter.

Good Programming Practice 7.5

Some programmers prefer to declare each variable on a separate line. This format allows for

easy insertion of a descriptive comment next to each declaration. 7.5

Another comment notation facilitates the writing of multiple-line comments. For

example,

/* This is a multiple-line

 comment. It can be

 split over many lines. */

iw3htp2.book Page 205 Wednesday, July 18, 2001 9:01 AM

206 JavaScript: Introduction to Scripting Chapter 7

comments can be spread over several lines. Such comments begin with delimiter /* and end

with delimiter */. All text between the delimiters of the comment is ignored by the compiler.

Common Programming Error 7.7

Forgetting one of the delimiters of a multiple-line comment is a syntax error. 7.7

Common Programming Error 7.8

Nesting multiple-line comments (i.e., placing a multiple-line comment between the delimiters

of another multiple-line comment) is a syntax error. 7.8

JavaScript adopted comments delimited with /* and */ from the C programming lan-

guage and single-line comments delimited with // from the C++ programming language.

JavaScript programmers generally prefer C++-style single-line comments over C-style

comments. Throughout this book, we use C++-style single-line comments.

Line 20 is a single-line comment indicating the purpose of the statement in the next two

lines. Lines 21–22 allow the user to enter a string representing the first of the two integers that

will be added. The window object’s prompt method displays the dialog in Fig. 7.7.

The first argument to prompt indicates to the user what to type in the text field. This

message is called a prompt because it directs the user to take a specific action. The optional

second argument is the default string to display in the text field; if the second argument is

not supplied, the text field does not display a default value. The user types characters in the

text field, then clicks the OK button to return the string to the program. [If you type, but

nothing appears in the text field, position the mouse pointer in the text field and click the

left mouse button to activate the text field.] Unfortunately, JavaScript does not provide a

simple form of input that is analogous to writing a line of text with document.write

and document.writeln. For this reason, we normally receive input from a user

through a GUI component such as the prompt dialog, as in this program, or through an

XHTML form GUI component, as we will see in later chapters.

Technically, the user can type anything in the text field of the prompt dialog. For this

program, if the user either types a noninteger value or clicks the Cancel button, a runtime

logic error will occur, and the sum of the two values will appear in the XHTML document

as NaN (not a number). In Chapter 12, JavaScript: Objects, we discuss the Number object

and its methods that can determine whether a value is not a number.

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 Prompt dialog displayed by the window object’s prompt method.

When the user

clicks OK, the

value typed

by the user is

returned to

the program

as a string.

The program

must convert

the string to a

number.

This is the text

field in which

the user types

the value.

This is the prompt to the user.

This is the default value if the

user does not enter a number.

iw3htp2.book Page 206 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 207

The statement at lines 21–22 gives the result of the call to the window object’s

prompt method (a string containing the characters typed by the user) to variable first-

Number by using the assignment operator, =. The statement is read as, firstNumber

gets the value of window.prompt("Enter first integer", "0"). The = oper-

ator is called a binary operator, because it has two operands—firstNumber and the

result of the expression window.prompt("Enter first integer", "0"). This

entire statement is called an assignment statement, because it assigns a value to a variable.

The expression to the right of the assignment operator always is evaluated first.

Lines 24 is a single-line comment that indicates the purpose of the statement in lines

25 and 26. The statement displays a prompt dialog in which the user types a string repre-

senting the second of the two integers to add.

Lines 29–30 convert the two strings input by the user to integer values that can be used

in a calculation. Function parseInt converts its string argument to an integer. Line 29

assigns the integer that function parseInt returns to the variable number1. Any subse-

quent references to number1 in the program use this same integer value. Line 30 assigns

the integer that function parseInt returns to variable number2. Any subsequent refer-

ences to number2 in the program use this same integer value. [Note: We refer to

parseInt as a function rather than a method because we do not precede the function call

with an object name (such as document or window) and a dot operator (.). The term

method implies that the function belongs to a particular object. For example, method

writeln belongs to the document object and method prompt belongs to the window

object.]

The assignment statement on line 33 calculates the sum of the variables number1 and

number2 and assigns the result to variable sum by using the assignment operator, =. The

statement is read as “sum gets the value of number1 + number2.” Most calculations

occur in assignment statements.

Good Programming Practice 7.6

Place spaces on either side of a binary operator. This format makes the operator stand out

and makes the program more readable. 7.6

After line 33 performs the calculation, line 36 uses document.writeln to display

the result of the addition. The expression from the preceding statement uses the operator +

to “add” a string (the literal "<h1>The sum is ") and sum (the variable containing the

integer result of the addition on line 33). JavaScript has a version of the + operator for string

concatenation that enables a string and a value of another data type (including another

string) to be concatenated. The result of this operation is a new (and normally longer)

string. If we assume that sum contains the value 117, the expression evaluates as follows:

JavaScript determines that the two operands of the + operator (the string "<h1>The sum

is " and the integer sum) are different types and that one of them is a string. Next, the

statement converts the value of variable sum to a string and concatenates it with

"<h1>The sum is ", which results in the string "<h1>The sum is 117". Then, the

statement concatenates the string "</h1>" to produce the string "<h1>The sum is

117</h1>". The browser renders this string as part of the XHTML document. Note that

the automatic conversion of integer sum occurs because it is concatenated with the string

literal "<h1>The sum is ". Also note that the space between is and 117 is part of the

string "<h1>The sum is ".

iw3htp2.book Page 207 Wednesday, July 18, 2001 9:01 AM

208 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.9

Confusing the + operator used for string concatenation with the + operator used for addition

can lead to strange results. For example, assuming that integer variable y has the value 5,

the expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7",

because first the value of y is concatenated with the string "y + 2 = ", then the value 2 is

concatenated with the new, larger string "y + 2 = 5". The expression "y + 2 = " + (y +

2) produces the desired result. 7.9

After the browser interprets the <head> section of the XHTML document (which

contains the JavaScript), it then interprets the <body> of the XHTML document (lines 41–

43) and renders the XHTML. If you click your browser’s Refresh (or Reload) button, the

browser will reload the XHTML document, so that you can execute the script again and add

two new integers. [Note: In some cases, it may be necessary to hold down the Shift key

while clicking your browser’s Refresh (or Reload) button, to ensure that the XHTML

document reloads properly.]

7.4 Memory Concepts

Variable names such as number1, number2 and sum actually correspond to locations in

the computer's memory. Every variable has a name, a type and a value.

In the addition program in Fig. 7.6, when line 22 executes, the string firstNumber

(previously entered by the user in a prompt dialog) is converted to an integer and placed

into a memory location to which the name number1 has been assigned by the interpreter.

Suppose the user entered the string 45 as the value for firstNumber. The program con-

verts firstNumber to an integer, and the computer places the integer value 45 into loca-

tion number1, as shown in Fig. 7.8.

Whenever a value is placed in a memory location, the value replaces the previous value

in that location. The previous value is lost.

When line 26 executes, suppose the user enters the string 72 as the value for second-

Number. The program converts secondNumber to an integer, the computer places that

integer value, 72, into location number2 and the memory appears as shown in Fig. 7.9.

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Memory location showing the name and value of variable number1.

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 Memory locations after values for variables number1 and number2
have been input.

number1 45

number1 45

number2 72

iw3htp2.book Page 208 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 209

Once the program has obtained values for number1 and number2, it adds the values

and places the sum into variable sum. The statement

sum = number1 + number2;

performs the addition and also replaces sum’s previous value. After sum is calculated, the

memory appears as shown in Fig. 7.10. Note that the values of number1 and number2

appear exactly as they did before they were used in the calculation of sum. These values

were used, but not destroyed, as the computer performed the calculation. When a value is

read from a memory location, the process is nondestructive.

7.5 Arithmetic

Many scripts perform arithmetic calculations. Figure 7.11 summarizes the arithmetic oper-

ators. Note the use of various special symbols not used in algebra. The asterisk (*) indi-

cates multiplication; the percent sign (%) is the modulus operator, which is discussed

shortly. The arithmetic operators in Fig. 7.11 are binary operators, because each operates

on two operands. For example, the expression sum + value contains the binary operator

+ and the two operands sum and value.

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 Memory locations after calculating the sum of number1 and
number2.

JavaScript

operation

Arithmetic

operator

Algebraic

expression

JavaScript

expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division /
x / y or or x ÷ y

x / y

Modulus % r mod s r % s

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Arithmetic operators.

number1 45

number2 72

sum 117

x

y
--

iw3htp2.book Page 209 Wednesday, July 18, 2001 9:01 AM

210 JavaScript: Introduction to Scripting Chapter 7

JavaScript provides the modulus operator, %, which yields the remainder after division.

The expression x % y yields the remainder after x is divided by y. Thus, 7.4 % 3.1 yields

1.2, and 17 % 5 yields 2. In later chapters, we consider many interesting applications of

the modulus operator, such as determining whether one number is a multiple of another.

There is no arithmetic operator for exponentiation in JavaScript. (Chapter 9 shows how to

perform exponentiation in JavaScript.)

Arithmetic expressions in JavaScript must be written in straight-line form to facilitate

entering programs into the computer. Thus, expressions such as “a divided by b” must be

written as a / b, so that all constants, variables and operators appear in a straight line. The

following algebraic notation is generally not acceptable to computers:

Parentheses are used in JavaScript expressions in the same manner as in algebraic

expressions. For example, to multiply a times the quantity b + c we write:

a * (b + c)

JavaScript applies the operators in arithmetic expressions in a precise sequence deter-

mined by the following rules of operator precedence, which are generally the same as those

followed in algebra:

1. Operators in expressions contained between a left parenthesis and its corresponding

right parenthesis are evaluated first. Thus, parentheses may be used to force the or-

der of evaluation to occur in any sequence desired by the programmer. Parentheses

are said to be at the highest level of precedence.” In cases of nested, or embedded,

parentheses, the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an expression

contains several multiplication, division and modulus operations, operators are

applied from left to right. Multiplication, division and modulus operations are said

to have the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains sev-

eral addition and subtraction operations, operators are applied from left to right.

Addition and subtraction operations have the same level of precedence.

The rules of operator precedence enable JavaScript to apply operators in the correct or-

der. When we say that operators are applied from left to right, we are referring to the as-

sociativity of the operators—the order in which operators of equal priority are evaluated.

We will see that some operators associate from right to left. Figure 7.12 summarizes

these rules of operator precedence. The table in Fig. 7.12 will be expanded as additional

JavaScript operators are introduced. A complete precedence chart is included in Appen-

dix B.

Now, in light of the rules of operator precedence, let us consider several algebraic

expressions. Each example lists an algebraic expression and the equivalent JavaScript

expression.

a

b

iw3htp2.book Page 210 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 211

The following is an example of an arithmetic mean (average) of five terms:

Algebra:

JavaScript: m = (a + b + c + d + e) / 5;

The parentheses are required, because division has higher precedence than that of addition.

The entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are er-

roneously omitted, we obtain a + b + c + d + e / 5, which evaluates as

The following is an example of the equation of a straight line:

Algebra:

JavaScript: y = m * x + b;

No parentheses are required. The multiplication operator is applied first, because multipli-

cation has a higher precedence than that of addition. The assignment occurs last, because it

has a lower precedence than that of multiplication and division.

The following example contains modulus (%), multiplication, division, addition and

subtraction operations:

Algebra:

JavaScript: z = p * r % q + w / x - y;

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first. If

there are several pairs of parentheses on the same

level (i.e., not nested), they are evaluated from left to

right.

*, / or % Multiplication

Division

Modulus

Evaluated second. If there are several such operations,

they are evaluated from left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several such operations,

they are evaluated from left to right.

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Precedence of arithmetic operators.

m
a b c d e+ + + +

5
---------------------------------------=

a b c d
e

5
---+ + + +

y mx b+=

z pr%q w/x y–+=

1 2 4 3 56

iw3htp2.book Page 211 Wednesday, July 18, 2001 9:01 AM

212 JavaScript: Introduction to Scripting Chapter 7

The circled numbers under the statement indicate the order in which JavaScript applies the

operators. The multiplication, modulus and division operations are evaluated first in left-

to-right order (i.e., they associate from left to right), because they have higher precedence

than that of addition and subtraction. The addition and subtraction operations are evaluated

next. These operations are also applied from left to right.

Not all expressions with several pairs of parentheses contain nested parentheses. For

example, the expression

a * (b + c) + c * (d + e)

does not contain nested parentheses. Rather, these parentheses are on the same level.

To develop a better understanding of the rules of operator precedence, consider the

evaluation of a second-degree polynomial (y = ax2 + bx + c):

y = a * x * x + b * x + c;

The circled numbers under the preceding statement indicate the order in which JavaScript

applies the operators. There is no arithmetic operator for exponentiation in JavaScript; x2

is represented as x * x.

Suppose that a, b, c and x are initialized as follows: a = 2, b = 3, c = 7 and x = 5.

Figure 7.13 illustrates the order in which the operators are applied in the preceding second-

degree polynomial.

As in algebra, it is acceptable to place unnecessary parentheses in an expression to

make the expression clearer. Such unnecessary parentheses are also called redundant

parentheses. For example, the preceding assignment statement might be parenthesized as

follows:

 y = (a * x * x) + (b * x) + c;

Good Programming Practice 7.7

Using parentheses for complex arithmetic expressions, even when the parentheses are not

necessary, can make the arithmetic expressions easier to read. 7.7

7.6 Decision Making: Equality and Relational Operators

This section introduces a version of JavaScript’s if structure that allows a program to

make a decision based on the truth or falsity of a condition. If the condition is met (i.e., the

condition is true), the statement in the body of the if structure is executed. If the condition

is not met (i.e., the condition is false), the statement in the body of the if structure is not

executed. We will see an example shortly.

Conditions in if structures can be formed by using the equality operators and rela-

tional operators summarized in Fig. 7.14. The relational operators all have the same level

of precedence and associate from left to right. The equality operators both have the same

level of precedence, which is lower than the precedence of the relational operators. The

equality operators also associate from left to right.

16 2 4 3 5

iw3htp2.book Page 212 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 213

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Order in which a second-degree polynomial is evaluated.

Standard algebraic

equality operator or

relational operator

JavaScript

equality or relational

operator

Sample

JavaScript

condition

Meaning of

JavaScript condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 Equality and relational operators.

y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10 (Leftmost multiplication)

y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7;

 3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7;

 50 + 15 is 65 (Leftmost addition)

y = 65 + 7;

 65 + 7 is 72 (Last addition)

y = 72; (Last operation—place 72 into y)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.

iw3htp2.book Page 213 Wednesday, July 18, 2001 9:01 AM

214 JavaScript: Introduction to Scripting Chapter 7

Common Programming Error 7.10

It is a syntax error if the operators ==, !=, >= and <= contain spaces between their symbols,

as in = =, ! =, > = and < =, respectively. 7.10

Common Programming Error 7.11

Reversing the operators !=, >= and <=, as in =!, => and =<, respectively, is a syntax error. 7.11

Common Programming Error 7.12

Confusing the equality operator, ==, with the assignment operator, =, is a logic error. The

equality operator should be read as “is equal to,” and the assignment operator should be

read as“gets” or “gets the value of.” Some people prefer to read the equality operator as

“double equals” or “equals equals.” 7.12

The script in Fig. 7.15 uses six if statements to compare two values input into

prompt dialogs by the user. If the condition in any of the if statements is satisfied, the

assignment statement associated with that if statement is executed. The user inputs two

values through input dialogs. The program stores the values in the variables first and

second, then converts the values to integers and stores them in variables number1 and

number2. Finally, the program compares the values and displays the results of the com-

parison in an information dialog. The script and sample outputs are shown in Fig. 7.15.

Lines 15–18 declare the variables used in the script. Remember that variables may be

declared in one declaration or in multiple declarations. If more than one name is declared

in a declaration (as in this example), the names are separated by commas (,). This list of

names is referred to as a comma-separated list. Once again, notice the comment at the end

of each line, indicating the purpose of each variable in the program. Line 21 uses

window.prompt to allow the user to input the first value and to store the value in

first.

Line 24 uses window.prompt to allow the user to input the second value and to

store the value in second. Lines 27–28 conver the strings to integers and stores them in

variables number1 and number2. Line 30 outputs a line of XHTML text containing the

<h1> head Comparison Results. Lines 31–32 output a line of XHTML text that indi-

cates the start of a <table> that has a one-pixel border and is 100% of the browser

window’s width.

The if structure (lines 34–36) compares the values of variables first and second

to test them for equality. If the values are equal, the statement on lines 35–36 outputs a line

of XHTML text representing one row of an XHTML table (as indicated by the <tr> and

</tr> tags). The text in the row contains the result of first + " == " + second. As in

Fig. 7.6, the + operator is used in this expression to perform string concatenation. If the

conditions are true in one or more of the if structures starting at lines 38, 42, 46, 50 and

54, the corresponding document.writeln statement(s) output(s) a line of XHTML text

representing a row in the XHTML table.

Notice the indentation in the if statements throughout the program. Such indentation

enhances program readability.

Good Programming Practice 7.8

Indent the statement in the body of an if structure to make the body of the structure stand

out and to enhance program readability. 7.8

iw3htp2.book Page 214 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 215

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Fig. 7.14: comparison.html -->

6 <!-- Using if statements, relational operators -->

7 <!-- and equality operators -->

8
9 <html xmlns = "http://www.w3.org/1999/xhtml">

10 <head>

11 <title>Performing Comparisons</title>

12
13 <script type = "text/javascript">

14 <!--

15 var first, // first string entered by user

16 second, // second string entered by user

17 number1, // first number to compare

18 number2; // second number to compare

19
20 // read first number from user as a string

21 first = window.prompt("Enter first integer:", "0");

22
23 // read second number from user as a string

24 second = window.prompt("Enter second integer:", "0");

25
26 // convert numbers from strings to integers

27 number1 = parseInt(first);

28 number2 = parseInt(second);

29
30 document.writeln("<h1>Comparison Results</h1>");

31 document.writeln(

32 "<table border = \"1\" width = \"100%\">");

33
34 if (number1 == number2)

35 document.writeln("<tr><td>" + number1 + " == " +

36 number2 + "</td></tr>");

37
38 if (number1 != number2)

39 document.writeln("<tr><td>" + number1 + " != " +

40 number2 + "</td></TR>");

41
42 if (number1 < number2)

43 document.writeln("<tr><td>" + number1 + " < " +

44 number2 + "</td></tr>");

45
46 if (number1 > number2)

47 document.writeln("<tr><td>" + number1 + " > " +

48 number2 + "</td></tr>");

49
50 if (number1 <= number2)

51 document.writeln("<tr><td>" + number1 + " <= " +

52 number2 + "</td></tr>");

53

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Using equality and relational operators (part 1 of 3).

iw3htp2.book Page 215 Wednesday, July 18, 2001 9:01 AM

216 JavaScript: Introduction to Scripting Chapter 7

54 if (number1 >= number2)

55 document.writeln("<tr><td>" + number1 + " >= " +

56 number2 + "</td></tr>");

57
58 // Display results

59 document.writeln("</table>");

60 // -->

61 </script>

62
63 </head>

64 <body>

65 <p>Click Refresh (or Reload) to run the script again</p>

66 </body>

67 </html>

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Using equality and relational operators (part 2 of 3).

iw3htp2.book Page 216 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 217

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Using equality and relational operators (part 3 of 3).

iw3htp2.book Page 217 Wednesday, July 18, 2001 9:01 AM

218 JavaScript: Introduction to Scripting Chapter 7

Good Programming Practice 7.9

Place only one statement per line in a program. This format enhances program readability. 7.9

Common Programming Error 7.13

Forgetting the left and right parentheses for the condition in an if structure is a syntax er-

ror. The parentheses are required. 7.13

Notice that there is no semicolon (;) at the end of the first line of each if structure.

Such a semicolon would result in a logic error at execution time. For example,

if (number1 == number2) ;

 document.writeln("<tr><td>" + number1 + " == " +

 number2 + "</td></tr>");

would actually be interpreted by JavaScript as

if (number1 == number2)

 ;

document.writeln("<tr><td>" + number1 + " == " +

 number2 + "</td></tr>");

where the semicolon on the line by itself—called the empty statement—is the statement to

execute if the condition in the if structure is true. When the empty statement executes, no

task is performed in the program. The program then continues with the assignment state-

ment, which executes regardless of whether the condition is true or false.

Common Programming Error 7.14

Placing a semicolon immediately after the right parenthesis of the condition in an if struc-

ture is normally a logic error. The semicolon would cause the body of the if structure to be

empty, so the if structure itself would perform no action, regardless of whether its condition

is true. Worse yet, the intended body statement of the if structure would now become a state-

ment in sequence after the if structure and would always be executed. 7.14

Notice the use of spacing in Fig. 7.15. Remember that whitespace characters, such as

tabs, newlines and spaces, are normally ignored by the compiler. So, statements may be

split over several lines and may be spaced according to the programmer’s preferences

without affecting the meaning of a program. However, it is incorrect to split identifiers and

string literals. Ideally, statements should be kept small, but it is not always possible to do so.

Good Programming Practice 7.10

A lengthy statement may be spread over several lines. If a single statement must be split

across lines, choose breaking points that make sense, such as after a comma in a comma-

separated list or after an operator in a lengthy expression. If a statement is split across two

or more lines, indent all subsequent lines. 7.10

The chart in Fig. 7.16 shows the precedence of the operators introduced in this chapter.

The operators are shown from top to bottom in decreasing order of precedence. Notice that

all of these operators, with the exception of the assignment operator, =, associate from left

to right. Addition is left associative, so an expression like x + y + z is evaluated as if it had

been written as (x + y) + z. The assignment operator, =, associates from right to left, so

iw3htp2.book Page 218 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 219

an expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which,

as we will soon see, first assigns the value 0 to variable y and then assigns the result of that

assignment, 0, to x.

Good Programming Practice 7.11

Refer to the operator precedence chart when writing expressions containing many operators.

Confirm that the operators in the expression are performed in the order in which you expect

them to be performed. If you are uncertain about the order of evaluation in a complex expres-

sion, use parentheses to force the order, exactly as you would do in algebraic expressions.

Be sure to observe that some operators, such as assignment (=), associate from right to left

rather than from left to right. 7.11

We have introduced many important features of JavaScript, including how to display

data, how to input data from the keyboard, how to perform calculations and how to make

decisions. In Chapter 8, we build on the techniques of Chapter 7 as we introduce structured

programming. You will become more familiar with indentation techniques. We will study

how to specify and vary the order in which statements are executed; this order is called the -

flow of control.

7.7 JavaScript Internet and World Wide Web Resources

There are a tremendous number of resources for JavaScript programmers on the Internet

and World Wide Web. This section lists a variety of JScript, JavaScript and ECMAScript

resources available on the Internet and provides a brief description of each. Additional re-

sources for these topics are presented in the subsequent chapters on JavaScript and in other

chapters as necessary.

www.ecma.ch/ecma1/stand/ecma-262.htm

JScript is Microsoft’s version of JavaScript—a scripting language that is standardized by the ECMA

(European Computer Manufacturer’s Association) as ECMAScript. This site is the home of the stan-

dard document for ECMAScript.

msdn.microsoft.com/scripting/default.htm

The Microsoft Windows Script Technologies page includes an overview of JScript, complete with tu-

torials, FAQs, demos, tools for downloading and newsgroups.

www.webteacher.com/javascript

Webteacher.com is an excellent source for tutorials that focus on teaching with detailed explanations

and examples. This site is particularly useful for nonprogrammers.

Operators Associativity Type

() left to right parentheses

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Precedence and associativity of the operators discussed so far.

iw3htp2.book Page 219 Wednesday, July 18, 2001 9:01 AM

220 JavaScript: Introduction to Scripting Chapter 7

wsabstract.com

Website Abstraction is devoted to JavaScript and provides specialized tutorials and many free scripts.

This site is good for beginners, as well as people with prior experience who are looking for help in a

specific area of JavaScript.

www.webdeveloper.com/javascript

WebDeveloper.com provides tutorials, tools, and links to many free scripts.

SUMMARY

• The JavaScript language facilitates a disciplined approach to the design of computer programs that

enhance Web pages.

• JScript is Microsoft’s version of JavaScript—a scripting language that is standardized by the

ECMA (European Computer Manufacturer’s Association) as ECMAScript.

• The spacing displayed by a browser in a Web page is determined by the XHTML elements used

to format the page.

• Often, JavaScripts appear in the <head> section of the XHTML document.

• The browser interprets the contents of the <head> section first.

• The <script> tag indicates to the browser that the text that follows is part of a script. Attribute

type specifies the scripting language used in the script—such as JavaScript.

• A string of characters can be contained between double (") or single (’) quotation marks.

• A string is sometimes called a character string, a message or a string literal.

• The browser’s document object represents the XHTML document currently being displayed in

the browser. The document object allows a script programmer to specify XHTML text to be dis-

played in the XHTML document.

• The browser contains a complete set of objects that allow script programmers to access and ma-

nipulate every element of an XHTML document.

• An object resides in the computer’s memory and contains information used by the script. The term

object normally implies that attributes (data) and behaviors (methods) are associated with the ob-

ject. The object’s methods use the attributes to provide useful services to the client of the object—

the script that calls the methods.

• The document object’s writeln method writes a line of XHTML text in the XHTML document.

• The parentheses following the name of a method contain the arguments that the method requires

to perform its task (or its action).

• Using writeln to write a line of XHTML text into a document does not guarantee that a cor-

responding line of text will appear in the XHTML document. The text displayed is dependent on

the contents of the string written, which is subsequently rendered by the browser. The browser will

interpret the XHTML elements as it normally does to render the final text in the document.

• Every statement should end with a semicolon (also known as the statement terminator), although

none is required by JavaScript.

• JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is a syntax error.

• Sometimes it is useful to display information in windows called dialogs that “pop up” on the screen

to grab the user’s attention. Dialogs are typically used to display important messages to the user

browsing the Web page. The browser’s window object uses method alert to display an alert

dialog. Method alert requires as its argument the string to be displayed.

• When a backslash is encountered in a string of characters, the next character is combined with the

backslash to form an escape sequence. The escape sequence \n is the newline character. It causes

the cursor in the XHTML document to move to the beginning of the next line in the dialog.

iw3htp2.book Page 220 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 221

• The keyword var is used to declare the names of variables. A variable is a location in the com-

puter’s memory where a value can be stored for use by a program. Though you are not required to

do so, you should declare all variables with a name in a var statement before they are used in a

program.

• A variable name can be any valid identifier consisting of letters, digits, underscores (_) and dollar

signs ($) that does not begin with a digit and does not contain any spaces.

• Declarations end with a semicolon (;) and can be split over several lines, with each variable in the

declaration separated by a comma (forming a comma-separated list of variable names). Several

variables may be declared in one declaration or in multiple declarations.

• Programmers often indicate the purpose of each variable in the program by placing a JavaScript

comment at the end of each line in the declaration. A single-line comment begins with the charac-

ters // and terminates at the end of the line. Comments do not cause the browser to perform any

action when the script is interpreted; rather, comments are ignored by the JavaScript interpreter.

• Multiple-line comments begin with delimiter /* and end with delimiter */. All text between the

delimiters of the comment is ignored by the compiler.

• The window object’s prompt method displays a dialog into which the user can type a value. The

first argument is a message (called a prompt) that directs the user to take a specific action. The

optional second argument is the default string to display in the text field.

• A variable is assigned a value with an assignment statement, using the assignment operator, =. The

= operator is called a binary operator, because it has two operands.

• Function parseInt converts its string argument to an integer.

• JavaScript has a version of the + operator for string concatenation that enables a string and a value

of another data type (including another string) to be concatenated.

• Variable names correspond to locations in the computer’s memory. Every variable has a name, a

type, a size and a value.

• When a value is placed in a memory location, the value replaces the previous value in that location.

When a value is read out of a memory location, the process is nondestructive.

• The arithmetic operators are binary operators, because they each operate on two operands.

• Operators in arithmetic expressions are applied in a precise sequence determined by the rules of

operator precedence.

• Parentheses may be used to force the order of evaluation of operators to occur in any sequence de-

sired by the programmer.

• When we say that operators are applied from left to right, we are referring to the associativity of

the operators. Some operators associate from right to left.

• Java’s if structure allows a program to make a decision based on the truth or falsity of a condition.

If the condition is met (i.e., the condition is true), the statement in the body of the if structure is

executed. If the condition is not met (i.e., the condition is false), the statement in the body of the

if structure is not executed.

• Conditions in if structures can be formed by using the equality operators and relational operators.

TERMINOLOGY

\" double-quote escape sequence alert dialog

\n newline escape sequence alert method of the window object

<head> section of the XHTML document argument to a method

<script></script> arithmetic expressions in straight-line form

addition operator (+) arithmetic operator

iw3htp2.book Page 221 Wednesday, July 18, 2001 9:01 AM

222 JavaScript: Introduction to Scripting Chapter 7

SELF-REVIEW EXERCISES

7.1 Fill in the blanks in each of the following statements:

a) begins a single-line comment.

b) Every statement should end with a .

assignment operator (=) name of a variable

assignment statement object

attribute operand

automatic conversion operator associativity

backslash (\) escape character operator precedence

behavior parentheses

binary operator parseInt function

blank line perform an action

case sensitive program

character string prompt

client of an object prompt dialog

comma-separated list prompt method of the window object

comment redundant parentheses

condition relational operators

data remainder after division

decision making rules of operator precedence

declaration runtime error

dialog script

division operator (/) scripting language

document object self-documenting

double quotation (") marks semicolon (;) statement terminator

ECMA single quotation (’) marks

ECMAScript single-line comment (//)

empty statement statement

equality operators string concatenation

error message string concatenation operator (+)

escape sequence string literal

European Computer Manufacturer’s Association

(ECMA)

string of characters

false subtraction operator (-)

identifier syntax error

if structure text field

inline scripting true

integer type attribute of the <script> tag

interpreter type of a variable

JavaScript value of a variable

JavaScript interpreter var keyword

JScript variable

location in the computer's memory violation of the language rules

logic error whitespace characters

meaningful variable names whole number

method window object

modulus operator (%) write method of the document object

multiple-line comment (/* and */) writeln method of the document object

multiplication operator (*)

iw3htp2.book Page 222 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 223

c) The structure is used to make decisions.

d) , , and are known as whitespace.

e) The object displays alert dialogs and prompt dialogs.

f) are reserved for use by JavaScript.

g) Methods and of the object write XHTML text into

an XHTML document.

7.2 State whether each of the following is true or false. If false, explain why.

a) Comments cause the computer to print the text after the // on the screen when the pro-

gram is executed.

b) JavaScript considers the variables number and NuMbEr to be identical.

c) The modulus operator (%) can be used only with any numeric operands.

d) The arithmetic operators *, /, %, + and - all have the same level of precedence.

e) Method parseInt converts an integer to a string.

7.3 Write JavaScript statements to accomplish each of the following tasks:

a) Declare variables c, thisIsAVariable, q76354 and number.

b) Display a dialog asking the user to enter an integer. Show a default value of 0 in the text

field.

c) Convert a string to an integer, and store the converted value in variable age. Assume that

the string is stored in stringValue.

d) If the variable number is not equal to 7, display "The variable number is not

equal to 7" in a message dialog.

e) Output a line of XHTML text that will display the message "This is a JavaScript

program" on one line in the XHTML document.

f) Output a line of XHTML text that will display the message "This is a JavaScript

program" on two lines in the XHTML document. Use only one statement.

7.4 Identify and correct the errors in each of the following statements:

a) if (c < 7);

 window.alert("c is less than 7");

b) if (c => 7)

 window.alert("c is equal to or greater than 7");

7.5 Write a statement (or comment) to accomplish each of the following tasks:

a) State that a program will calculate the product of three integers.

b) Declare the variables x, y, z and result.

c) Declare the variables xVal, yVal and zVal.

d) Prompt the user to enter the first value, read the value from the user and store it in the

variable xVal.

e) Prompt the user to enter the second value, read the value from the user and store it in the

variable yVal.

f) Prompt the user to enter the third value, read the value from the user and store it in the

variable zVal.

g) Convert xVal to an integer, and store the result in the variable x.

h) Convert yVal to an integer, and store the result in the variable y.

i) Convert zVal to an integer, and store the result in the variable z.

j) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.

k) Write a line of XHTML text containing the string "The product is " followed by the

value of the variable result.

7.6 Using the statements you wrote in Exercise 7.5, write a complete program that calculates and

prints the product of three integers.

iw3htp2.book Page 223 Wednesday, July 18, 2001 9:01 AM

224 JavaScript: Introduction to Scripting Chapter 7

ANSWERS TO SELF-REVIEW EXERCISES

7.1 a) //. b) Semicolon (;). c) if. d) Blank lines, space characters, newline characters and

tab characters. e) window. f) Keywords. g) write, writeln, document.

7.2 a) False. Comments do not cause any action to be performed when the program is executed.

They are used to document programs and improve their readability. b) False. JavaScript is case sen-

sitive, so these variables are distinct. c) True. d) False. The operators *, / and % are on the same

level of precedence, and the operators + and - are on a lower level of precedence. e) False. Function

parseInt converts a string to an integer value.

7.3 a) var c, thisIsAVariable, q76354, number;

b) value = window.prompt("Enter an integer", "0");

c) var age = parseInt(stringValue);

d) if (number != 7)

 window.alert("The variable number is not equal to 7");

e) document.writeln("This is a JavaScript program");

f) document.writeln("This is a
JavaScript program");

7.4 a) Error: There should not be a semicolon after the right parenthesis of the condition in the if

statement. Correction: Remove the semicolon after the right parenthesis. [Note: The result of this error

is that the output statement is executed whether or not the condition in the if statement is true. The

semicolon after the right parenthesis is considered an empty statement—a statement that does nothing.]

b) Error: The relational operator => is incorrect.

Correction: Change => to >=.

7.5 a) // Calculate the product of three integers

b) var x, y, z, result;

c) var xVal, yVal, zVal;

d) xVal = window.prompt("Enter first integer:", "0");

e) yVal = window.prompt("Enter second integer:", "0");

f) zVal = window.prompt("Enter third integer:", "0");

g) x = parseInt(xVal);

h) y = parseInt(yVal);

i) z = parseInt(zVal);

j) result = x * y * z;

k) document.writeln(

 "<h1>The product is " + result + "</h1>");

7.6 The program is as follows:

1 <?xml version = "1.0"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

4
5 <!-- Exercise 7.6: product.html -->

6
7 <html xmlns = "http://www.w3.org/1999/xhtml">

8 <head>

9 <title>Product of Three Integers</title>

10
11 <script type = "text/javascript">

12 <!--

13 // Calculate the product of three integers

iw3htp2.book Page 224 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 225

EXERCISES

7.7 Fill in the blanks in each of the following statements:

a) are used to document a program and improve its readability.

b) A dialog capable of receiving input from the user is displayed with method

of object .

c) A JavaScript statement that makes a decision is .

d) Calculations are normally performed by statements.

e) A dialog capable of showing a message to the user is displayed with method

of object .

7.8 Write JavaScript statements that accomplish each of the following tasks:

a) Display the message "Enter two numbers" using the window object.

b) Assign the product of variables b and c to variable a.

c) State that a program performs a sample payroll calculation [Hint: Use text that helps to

document a program].

7.9 State whether each of the following is true or false. If false, explain why.

a) JavaScript operators are evaluated from left to right.

b) The following are all valid variable names: _under_bar_, m928134, t5, j7,

her_sales$, his_$account_total, a, b$, c, z, z2.

c) A valid JavaScript arithmetic expression with no parentheses is evaluated from left to

right.

d) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

7.10 Fill in the blanks in each of the following statements:

a) What arithmetic operations have the same precedence as multiplication? .

b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .

c) A location in the computer's memory that may contain different values at various times

throughout the execution of a program is called a .

7.11 What displays in the message dialog when each of the given JavaScript statements is per-

formed? Assume that x = 2 and y = 3.

14 var x, y, z, result;

15 var xVal, yVal, zVal;

16
17 xVal = window.prompt("Enter first integer:", "0");

18 yVal = window.prompt("Enter second integer:", "0");

19 zVal = window.prompt("Enter third integer:", "0");

20
21 x = parseInt(xVal);

22 y = parseInt(yVal);

23 z = parseInt(zVal);

24
25 result = x * y * z;

26 document.writeln("<h1>The product is " +

27 result + "<h1>");

28 // -->

29 </script>

30
31 </head><body></body>

32 </html>

iw3htp2.book Page 225 Wednesday, July 18, 2001 9:01 AM

226 JavaScript: Introduction to Scripting Chapter 7

a) window.alert("x = " + x);

b) window.alert("The value of x + x is " + (x + x));

c) window.alert("x =");

d) window.alert((x + y) + " = " + (y + x));

7.12 Which of the following JavaScript statements contain variables whose values are destroyed

(i.e., changed or replaced)?

a) p = i + j + k + 7;

b) window.alert("variables whose values are destroyed");

c) window.alert("a = 5");

d) stringVal = window.prompt("Enter string:");

7.13 Given y = ax3 + 7, which of the following are correct statements for this equation?

a) y = a * x * x * x + 7;

b) y = a * x * x * (x + 7);

c) y = (a * x) * x * (x + 7);

d) y = (a * x) * x * x + 7;

e) y = a * (x * x * x) + 7;

f) y = a * x * (x * x + 7);

7.14 State the order of evaluation of the operators in each of the following JavaScript statements,

and show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;

b) x = 2 % 2 + 2 * 2 - 2 / 2;

c) x = (3 * 9 * (3 + (9 * 3 / (3))));

7.15 Write a script that displays the numbers 1 to 4 on the same line, with each pair of adjacent

numbers separated by one space. Write the program using the following methods:

a) Using one document.writeln statement.

b) Using four document.write statements.

7.16 Write a script that asks the user to enter two numbers, obtains the two numbers from the user

and outputs XHTML text that displays the sum, product, difference and quotient of the two numbers.

Use the techniques shown in Fig. 7.6.

7.17 Write a script that asks the user to enter two integers, obtains the numbers from the user and

outputs XHTML text that displays the larger number followed by the words “is larger” in an in-

formation message dialog. If the numbers are equal, output XHTML text that displays the message

“These numbers are equal.” Use the techniques shown in Fig. 7.15.

7.18 Write a script that inputs three integers from the user and displays the sum, average, product,

smallest and largest of the numbers in an alert dialog.

7.19 Write a script that inputs from the user the radius of a circle and outputs XHTML text that

displays the circle’s diameter, circumference and area. Use the constant value 3.14159 for π. Use the

GUI techniques shown in Fig. 7.6. [Note: You may also use the predefined constant Math.PI for

the value of π. This constant is more precise than the value 3.14159. The Math object is defined by

JavaScript and provides many common mathematical capabilities.] Use the following formulas (r is

the radius): diameter = 2r, circumference = 2πr, area = πr2.

7.20 Write a script that outputs XHTML text that displays in the XHTML document an oval, an

arrow and a diamond using asterisks (*), as follows [Note: Use the <pre> and </pre> tags to spec-

ify that the asterisks should be displayed using a fixed-width font]:

iw3htp2.book Page 226 Wednesday, July 18, 2001 9:01 AM

Chapter 7 JavaScript: Introduction to Scripting 227

********* *** * *

* * * * *** * *

* * * * ***** * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

********* *** * *

7.21 Modify the program you created in Exercise 7.20 to display the shapes without using the

<pre> and </pre> tags. Does the program display the shapes exactly as in Exercise 7.20?

7.22 What does the following code print?

document.writeln("*\n**\n***\n****\n*****");

7.23 What does the following code print?

document.writeln("*");

document.writeln("***");

document.writeln("*****");

document.writeln("****");

document.writeln("**");

7.24 What does the following code print?

document.write("*
");

document.write("***
");

document.write("*****
");

document.write("****
");

document.writeln("**");

7.25 What does the following code print?

document.write("*
");

document.writeln("***");

document.writeln("*****");

document.write("****
");

document.writeln("**");

7.26 Write a script that reads five integers and determines and outputs XHTML text that displays

the largest integer and the smallest integer in the group. Use only the programming techniques you

learned in this chapter.

7.27 Write a script that reads an integer and determines and outputs XHTML text that displays

whether it is odd or even. [Hint: Use the modulus operator. An even number is a multiple of 2. Any

multiple of 2 leaves a remainder of zero when divided by 2.]

7.28 Write a script that reads in two integers and determines and outputs XHTML text that dis-

plays whether the first is a multiple of the second. [Hint: Use the modulus operator.]

7.29 Write a script that outputs XHTML text that displays in the XHTML document a checker-

board pattern, as follows:

iw3htp2.book Page 227 Wednesday, July 18, 2001 9:01 AM

228 JavaScript: Introduction to Scripting Chapter 7

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

* * * * * * * *

 * * * * * * * *

7.30 Write a script that inputs five numbers and determines and outputs XHTML text that displays

the number of negative numbers input, the number of positive numbers input and the number of zeros

input.

7.31 Using only the programming techniques you learned in this chapter, write a script that calcu-

lates the squares and cubes of the numbers from 0 to 10 and outputs XHTML text that displays the

resulting values in an XHTML table format, as follows:

number square cube

0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

[Note: This program does not require any input from the user.]

iw3htp2.book Page 228 Wednesday, July 18, 2001 9:01 AM

